Temperature dependent thermal diffusivity using PDE Toolbox (2024)

36 Ansichten (letzte 30 Tage)

Ältere Kommentare anzeigen

Tom am 5 Jun. 2024 um 16:16

  • Verknüpfen

    Direkter Link zu dieser Frage

    https://de.mathworks.com/matlabcentral/answers/2125811-temperature-dependent-thermal-diffusivity-using-pde-toolbox

  • Verknüpfen

    Direkter Link zu dieser Frage

    https://de.mathworks.com/matlabcentral/answers/2125811-temperature-dependent-thermal-diffusivity-using-pde-toolbox

Bearbeitet: Torsten am 5 Jun. 2024 um 20:44

In MATLAB Online öffnen

Hello,

This is my first implementation of a problem using the PDE Toolbox. My 3D time-dependent thermal model is the following : a sphere (radius equals to 1) with radiative flux on the outside surface, with cell at inital temperature Temperature dependent thermal diffusivity using PDE Toolbox (2). I would like to use a temperature dependent thermal diffusivity Temperature dependent thermal diffusivity using PDE Toolbox (3) where . I have then an analytical expression for it given by : Temperature dependent thermal diffusivity using PDE Toolbox (4), which I know from documentation for my material.

The parameters used in my simulations are the following :

lambda = @(location,state) 0.46+0.95*exp(-2.3e-3*state.u); % (W/m/K) Thermal conductivity

rho=1000; % (kg/m**3) Density

cp=1000; % (J/kg/K) Specific heat

T0=2000; % (K) Initial temperature

T_out=300; % (K) outer space temperature

eps=1; % Emissivity

dt=20; % (s) time-step

day=3600*24;

tmax=2*day;

tlist = [0:dt:tmax]; % time list

I then implement my model using Matlab PDE Toolbox :

thermalModel = createpde('thermal','transient');

gm = multisphere(1);

thermalModel.Geometry=gm;

generateMesh(thermalModel,'Hmax',0.2,"GeometricOrder","quadratic");

thermalModel.StefanBoltzmannConstant = 5.670373E-8;

thermalProperties(thermalModel,'ThermalConductivity',lambda,'MassDensity',rho,'SpecificHeat',cp);

% Initial Temperature

thermalIC(thermalModel,T0);

% Radiative Flux :

thermalBC(thermalModel,"Face",1,"Emissivity",@(region,state) eps,"AmbientTemperature",T_out, "Vectorized","on");

% Solver

thermalResults = solve(thermalModel,tlist);

Does anyone know whether the implementation is correct ?

Many thanks for any help you can give me !

Regards,

Tom

4 Kommentare

2 ältere Kommentare anzeigen2 ältere Kommentare ausblenden

Torsten am 5 Jun. 2024 um 17:37

Direkter Link zu diesem Kommentar

https://de.mathworks.com/matlabcentral/answers/2125811-temperature-dependent-thermal-diffusivity-using-pde-toolbox#comment_3180056

  • Verknüpfen

    Direkter Link zu diesem Kommentar

    https://de.mathworks.com/matlabcentral/answers/2125811-temperature-dependent-thermal-diffusivity-using-pde-toolbox#comment_3180056

Bearbeitet: Torsten am 5 Jun. 2024 um 17:38

Since your problem is 1-dimensional at the moment (solution only depends on r, I guess), I'd compare with the "pdepe" solution.

The unit factor of 1e-6 is no longer necessary in the formula for thermal conductivity ?

Tom am 5 Jun. 2024 um 17:56

Direkter Link zu diesem Kommentar

https://de.mathworks.com/matlabcentral/answers/2125811-temperature-dependent-thermal-diffusivity-using-pde-toolbox#comment_3180091

  • Verknüpfen

    Direkter Link zu diesem Kommentar

    https://de.mathworks.com/matlabcentral/answers/2125811-temperature-dependent-thermal-diffusivity-using-pde-toolbox#comment_3180091

As I had a 1e-6 factor in the diffusivity expression, I declared Temperature dependent thermal diffusivity using PDE Toolbox (7) and Temperature dependent thermal diffusivity using PDE Toolbox (8), to avoid multiplying by 1e-6, as the expression of diffusivity is Temperature dependent thermal diffusivity using PDE Toolbox (9).

The suggested problem is indeed a 1-dimensional case, however this was to use a sphere with voids afterwards.

Torsten am 5 Jun. 2024 um 19:41

Direkter Link zu diesem Kommentar

https://de.mathworks.com/matlabcentral/answers/2125811-temperature-dependent-thermal-diffusivity-using-pde-toolbox#comment_3180171

  • Verknüpfen

    Direkter Link zu diesem Kommentar

    https://de.mathworks.com/matlabcentral/answers/2125811-temperature-dependent-thermal-diffusivity-using-pde-toolbox#comment_3180171

Bearbeitet: Torsten am 5 Jun. 2024 um 20:44

What does it mean: sphere with voids ? A sphere with holes in it that make the temperature distribution asymmetric ?

As said: at this stage, I'd use "pdepe" for validation. Since it is a one-dimensional solver, the mesh can be chosen extremely fine such that it will ressemble comparing your PDE toolbox results with an analytical solution.

Umar am 5 Jun. 2024 um 20:38

Direkter Link zu diesem Kommentar

https://de.mathworks.com/matlabcentral/answers/2125811-temperature-dependent-thermal-diffusivity-using-pde-toolbox#comment_3180191

  • Verknüpfen

    Direkter Link zu diesem Kommentar

    https://de.mathworks.com/matlabcentral/answers/2125811-temperature-dependent-thermal-diffusivity-using-pde-toolbox#comment_3180191

Based on the information provided, it appears that you have successfully implemented a 3D time-dependent thermal model in Matlab using the PDE Toolbox. Your model consists of a sphere with radiative flux on the outside surface, and you have incorporated a temperature-dependent thermal diffusivity function λ(u) = 0.46 + 0.95 * exp(-2.3e-3 * u) as well as other parameters such as density, specific heat, initial temperature, outer space temperature, emissivity, time step, and simulation duration. Your implementation involves defining the geometry, mesh generation, setting Stefan-Boltzmann constant, specifying thermal properties, initializing initial temperature conditions, defining radiative flux boundary conditions, and solving the model over a specified time interval. To verify if your implementation is correct, you can consider the following aspects: 1. Check if the physical properties and boundary conditions are correctly defined based on your problem statement. 2. Verify that the mesh generation parameters are appropriate for capturing the spatial resolution required for accurate simulations. 3. Ensure that the thermal properties function λ(u) captures the desired temperature dependency accurately. 4. Confirm that the initial and boundary conditions are consistent with your model requirements. 5. Validate the solver settings and time-stepping scheme to ensure numerical stability and accuracy. You can further assess the correctness of your implementation by comparing simulation results with analytical solutions (if available), conducting sensitivity analyses on key parameters, and performing convergence studies to evaluate mesh independence. Overall, your approach seems comprehensive and well-structured. By rigorously validating your model against known benchmarks and conducting thorough testing, you can gain confidence in the accuracy and reliability of your thermal simulation results. If you encounter any discrepancies or unexpected behavior during validation, consider refining your model assumptions or numerical settings to address potential issues. I hope this guidance helps in evaluating the correctness of your implementation. Feel free to reach out for further assistance or clarification on specific aspects of your thermal model. Good luck with your simulations!

Melden Sie sich an, um zu kommentieren.

Melden Sie sich an, um diese Frage zu beantworten.

Antworten (0)

Melden Sie sich an, um diese Frage zu beantworten.

Siehe auch

Kategorien

Mathematics and OptimizationPartial Differential Equation ToolboxDomain-Specific ModelingHeat Transfer

Mehr zu Heat Transfer finden Sie in Help Center und File Exchange

Tags

  • pde
  • diffusivity
  • toolbox
  • thermal
  • temperature
  • dependent

Produkte

  • Partial Differential Equation Toolbox

Version

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Es ist ein Fehler aufgetreten

Da Änderungen an der Seite vorgenommen wurden, kann diese Aktion nicht abgeschlossen werden. Laden Sie die Seite neu, um sie im aktualisierten Zustand anzuzeigen.


Translated by Temperature dependent thermal diffusivity using PDE Toolbox (12)

Temperature dependent thermal diffusivity using PDE Toolbox (13)

Website auswählen

Wählen Sie eine Website aus, um übersetzte Inhalte (sofern verfügbar) sowie lokale Veranstaltungen und Angebote anzuzeigen. Auf der Grundlage Ihres Standorts empfehlen wir Ihnen die folgende Auswahl: .

Sie können auch eine Website aus der folgenden Liste auswählen:

Amerika

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europa

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom(English)

Asien-Pazifik

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Kontakt zu Ihrer lokalen Niederlassung

Temperature dependent thermal diffusivity using PDE Toolbox (2024)

FAQs

How is thermal diffusivity dependent on temperature? ›

It was found that the thermal diffusivity decreased with an increasing temperature [2,8], wet materials had a higher thermal diffusivity, and the thermal diffusivity was a minimum at the α−β transition [2].

What techniques are used to measure thermal diffusivity? ›

The most effective method used for measuring thermal diffusivity is the flash method. This transient technique features short measurement times, is completely non-destructive, and provides values with excellent accuracy and reproducibility.

What is the physical significance of thermal diffusivity of a metal? ›

Thermal diffusivity is important because it can tell how fast or slow a material can heat up. High values of thermal diffusivity mean a lower heat diffusion rate. Thus, the material can heat up or cool down quickly. Whereas a lower thermal diffusivity value means a higher heat diffusion rate.

How to calculate thermal diffusivity? ›

The thermal diffusivity equation is α = k/ρcp, where α represents thermal diffusivity, k is thermal conductivity, ρ is density, and cp is specific heat capacity. This equation allows one to understand how quickly a material can transmit temperature changes.

What is the relationship between temperature and diffusivity? ›

The greater the temperature of the system, the greater the kinetic energy of the atoms, therefore temperature has a significant effect on the diffusivity of the species.

How is diffusion dependent on temperature? ›

Diffusion is directly proportional to temperature as it increases the kinetic energy of the molecules and inversely proportional to density of the substance. On increasing the temperature, the diffusion increases and on increasing the density of substance, the diffusion decreases and vice versa.

Which material has the highest thermal diffusivity? ›

Thermal diffusivity of selected materials and substances
MaterialThermal diffusivity (mm2/s)
Molybdenum (99.95%) at 25 °C54.3
Al-5Mg-2Si-Mn (Magsimal-59) at 20 °C44.0
Tin40
Water vapor (1 atm, 400 K)23.38
43 more rows

What is the thermal diffusivity rule? ›

Thermal diffusivity is defined as the ratio of thermal conductivity to density and specific heat capacity at constant pressure and can be obtained by the following equation: (17) K = k / ρ c p . It describes the ability of a material to conduct thermal energy relative to its ability to store thermal energy [180].

What is difference between thermal conductivity and thermal diffusivity? ›

thermal conductivity, κ, is how well the material passes on heat (thermal energy), while. thermal diffusivity, α, is how well the material passes on a temperature change.

What metal has the highest thermal diffusivity? ›

Thermal Diffusivity Table
MaterialThermal Diffusivity (m2/s )Thermal Diffusivity (mm2/s )
Silver, pure (99.9%)1.6563 × 10-4165.63
Gold1.27 × 10-4127
Copper at 25 °C1.11 × 10-4111
Aluminium9.7 × 10-597
41 more rows

Is thermal diffusivity more for liquid or gas? ›

Generally, gases have low volumetric heat capacity (due to very low density) which leads to greater thermal diffusivity.

What happens to the diffusivity of a material as you increase the temperature? ›

Temperature: Higher temperatures increase the energy and therefore the movement of the molecules, increasing the rate of diffusion. Lower temperatures decrease the energy of the molecules, thus decreasing the rate of diffusion.

Does thermal diffusivity change with temperature? ›

It was found that the thermal diffusivity decreased with an increasing temperature [2,8], wet materials had a higher thermal diffusivity, and the thermal diffusivity was a minimum at the α−β transition [2].

What method is used to test thermal diffusivity? ›

Thermal Diffusivity is often measured with the flash method (LFA). It can also be measured with Hot Disc Transient Plane Source (TPS), Transient Hot Wire (THW) and Monotonic Heating (MMH). Our thermal diffusivity measurement methods cover a wide range of temperature and sample types.

What is thermal diffusivity proportional to? ›

It is directly proportional to thermal conductivity.

Why does diffusivity increase at elevated temperatures? ›

Temperature: Higher temperatures increase the energy and therefore the movement of the molecules, increasing the rate of diffusion. Lower temperatures decrease the energy of the molecules, thus decreasing the rate of diffusion.

What is thermal diffusivity directly proportional to? ›

It is directly proportional to thermal conductivity.

What is diffusivity dependent on? ›

Diffusivity can be defined as the ability of a drug to diffuse through the membrane and is inversely related to the molecular size. Diffusivity also depends on size and shape of the cavities of the membrane.

Why does thermal conductivity change with temperature? ›

As temperature increases, the thermal conductivity of metals generally decreases because, at higher temperatures, the increased phonon scattering (vibrations within the lattice structure) reduces the mean free path of electrons, thereby decreasing thermal conductivity.

References

Top Articles
Latest Posts
Article information

Author: Amb. Frankie Simonis

Last Updated:

Views: 5355

Rating: 4.6 / 5 (56 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Amb. Frankie Simonis

Birthday: 1998-02-19

Address: 64841 Delmar Isle, North Wiley, OR 74073

Phone: +17844167847676

Job: Forward IT Agent

Hobby: LARPing, Kitesurfing, Sewing, Digital arts, Sand art, Gardening, Dance

Introduction: My name is Amb. Frankie Simonis, I am a hilarious, enchanting, energetic, cooperative, innocent, cute, joyous person who loves writing and wants to share my knowledge and understanding with you.